Changing K-16 Classroom Practice

The Greater Birmingham Mathematics Partnership (GBMP)

John Mayer, P.I., UAB Mathematics Bernadette Mullins, BSC Mathematics Tommy Smith, UAB Education Rachel Cochran, Evaluator, CEA

Greater Birmingham Mathematics Partnership

- National Science Foundation MSP
 - TEAM-MATH
 - PRISM
 - GBMP
 - 9 diverse school systems
 - University of Alabama at Birmingham
 - Birmingham-Southern College
 - Mathematics Education Collaborative

GBMP Components

- Summer Courses for Teachers
- Internal and External Leadership Development
 - Administrators
 - MSTs
 - District Liaisons
- Parent and Community Awareness
- Engineering Application Tasks
- Middle School Mathematics Certification
- New Mathematics Track at UAB

Summer Courses

- Patterns I & II
- Numerical Reasoning
- Geometry
- Probability and Data Analysis
- Extending Algebraic Reasoning I & II
- Designed by Mathematics Education Collaborative
- Each course is 9 days, 54 hours of coursework

Course Characteristics

- Focus on "big" mathematical ideas
- Expandable tasks
- Five representations
- Use of manipulatives
- Group and individual work
- Importance of dissonance to learning process
- Group processing/sharing
- Communication and justification of thinking, both orally and in writing

Sample Patterns Task

Step 1

Step 2

Step 3

Step 4

- Build the next two steps in this pattern.
- How many tiles are needed for the 10th step?
- How many tiles are needed for the nth step?

Success of Summer Courses

- CKTM
- Performance Assessment
- Behavioral Checklist
- Portfolios
- RTOP
- Surveys

Changing Instruction at the University Level: What Research Says

- Culture focused on publishing, not teaching
- Lack of awareness/understanding of problem
- STEM faculty unskilled in changing curricula and pedagogy
- Absence of reward and accountability structures
- Large class size and faculty loads
- Lack of sustainability and scalability

Changing Instruction at UAB

- Mathematical Reasoning Track
 - IHE mathematics faculty participation in summer courses
 - Development of mathematics track and degree requirements
 - New middle school teaching certification
 - Revision of current mathematics courses
 - Development of new mathematics courses
 - Changing instructor practice

Changing Instructor Practice at UAB

MA 313 (modeled after Patterns)
MA 314 (modeled after Geometry)

 MA 110 (content overlapping with Probability and Data Analysis)

Evaluation Measures

Students

- Samples of problem sets and portfolios
- Focus groups
- Interviews
- Surveys
- IHE Faculty
 - Classroom observations
 - Syllabi and assignments
 - Focus groups
 - Interviews

IHE Observations

RTOP Categories (maximum score on each subscale is 20)	Traditional UAB Courses (n=7)	Revised UAB Courses (n=5)
	Median (Range)	Median (Range)
Lesson Design/Implementation	1 (0 - 3)	14 (11-15)
Propositional Knowledge	3 (3 - 6)	11 (10-12)
Procedural Knowledge	2 (0 - 6)	14 (14)
Communicative Interaction	1 (0 - 3)	13 (10-15)
Student/Teacher Relationships	2 (0 - 7)	14 (12-14)

Repeated Observations

RTOP Categories (maximum score on each subscale is 20)	Baseline	Revised
Lesson Design/Implementation	3	11
Propositional Knowledge	6	11
Procedural Knowledge	6	14
Communicative Interaction	3	13
Student/Teacher Relationships	7	14

Repeated Observations

RTOP Categories (maximum score on each subscale is 20)	MA 313		MA 314	
	Time 1	Time 2	Time 1	Time 2
Lesson Design/Implementation	14	18	15	18
Propositional Knowledge	10	17	12	17
Procedural Knowledge	14	18	14	18
Communicative Interaction	13	16	15	17
Student/Teacher Relationships	14	17	14	17

Finite Mathematics MA 110

- Core curriculum course for general studies
- Recently redesigned to include computer-assisted instruction
 - PROS
 - Actively engaged with material
 - More time spent on task
 - On-demand help in lab
 - CONS
 - Algorithmic learning
 - Emphasis on memorization
 - Computation rather than thought
 - Tenuous connection with QL

MA 110 Study

- All students exposed to same computer assisted lab instruction
- Three different class meeting formats
 - <u>Lecture</u> on up-coming material
 - <u>Lecture</u> on up-coming material and weekly in-class short <u>quiz</u>
 - Group work with no prior instruction
- Random assignment of students to class formats

MA 110 Measures

- Content pre-test and post-test
 - Problem identification
 - Problem-solving
 - Explanation
- Mathematics self-efficacy survey
- Course grades
- Focus groups at end of semester
 Longitudinal post-test (one year)

Benefits of Inquiry-Based Instruction: What Faculty Say

- Focus on exploration instead of lecture
- Building of self-esteem and productive disposition in students
- Students have deeper understanding of content
- Students show improved ability to communicate mathematical thinking
- Students show improved problem-solving abilities

Challenges of Inquiry-Based Instruction: What Faculty Say

- Buy-in from other faculty members
- Outside pressure to cover breadth of content
- Grading and accountability issues
- Students' anxiety and resistance
- Perception of lack of rigor
- Class duration
- Class size
- Logistical issues (space, storage)
- Statewide articulation agreement
- Tasks losing usefulness over time

What Students Say

After one course

- Frustration of not knowing whether answers are correct
- Lack of structure and purpose
- Lack of clarity about grading
- Required to "teach yourself"
- Group work not always effective
- Okay sometimes, but shouldn't be only method

What Students Say

After two courses:

- Learned much more about mathematics
- In some ways more difficult than traditional (have to think more, do more active work)
- In some ways easier than traditional (no memorizing or cramming, no longer mysterious)
- More rewarding to find answers yourself
- More confident about mathematics ability
- Lingering concerns about grading
- Group work still a problem for some

Emerging Ideas

- Immersion experience is critical
- Characteristics of students impact effectiveness
- Instructors and students get better at inquiry-based instruction over time
- Must have supportive environment for inquiry based instruction to be successful for students and instructors

Emerging Questions

- What makes some change, others not?
- Do students actually learn more this way?
- How is nature of learning different?
- What will be the effect in the classroom?
- What will it take to make it happen systemically or institutionally instead of individually?