Learning Through ReArrangement of Patterns

UNIVERSITY OF ALABAMA ATBIRMINGHAM

GREATER BIRMINGHAM MATHEMATICS PARTNERSHIP (GBMP)

JOHN C. MAYER* AND WILLIAM O. BOND

The Greater Birmingham Mathematics Partnership is funded by NSF awards EHR-0632522 and DUE-0928665.

Greater Birmingham Mathematics Partnership

Partner	Students	Minority	Reduced Lunch	MS	Gr. 6-8
Bessemer City Schools	4,087	97%	82%	1	962
Fairfield City Schools	2,323	100%	71%	1	585
Homewood City Schools	3,552	34%	22%	1	744
Hoover City Schools	11,141	22%	13%	3	2,537
Jefferson County Schools	32,553	28%	31%	7	8,713
Mt. Brook City Schools	4,150	1%	0%	1	1,016
Shelby County Schools	22,759	16%	24%	8	5,185
Trussville City Schools	4,100	8%	11%	1	970
Vestavia Hills City Schools	5,226	6%	4%	1	1,127
Univ. of Alabama at Birmingham	17,584	31%			
Birmingham-Southern College	1,412	16%			

Mathematics Education Collaborative - Bellingham, Washington

GBMP Activities

1. Summer Courses
2. Mathematics Support Teams
3. Administrator Sessions
4. Community Mathematics Nights
5. Middle School Mathematics Teaching Certificate
6. IHE Course Development (UAB \& BSC)
7. Engineering Application Tasks

GBMP Summer Courses

- Patterns: The Foundations of Algebraic Reasoning
- Also MA 313 at UAB (semester format)
- Patterns II: Further Explorations in Algebraic Reasoning
- Numerical Reasoning
- Also MA 316 at UAB
- Geometry and Proportional Reasoning
- Also MA 314 at UAB
- Probability
- Data Analysis
- Extending Algebraic Reasoning I and II

Summer Courses

- Challenging nine-day mathematics content courses
- Inquiry-based
- Menu-driven
- Expandable tasks
- Multiple representations
- Manipulatives
- Collaborative group work

- Academic year follow-up sessions

Challenging Courses and Curricula

\square

Deepening understanding of big mathematical ideas

Introduce a mathematical idea by posing openended problems that motivate it.

\square Productive disposition

Help students develop persistence, resourcefulness, and confidence.
\square Inquiry and reflection
Encourage students to think critically about mathematical ideas and solutions.
\square Communication
Value the role of communication in developing an intellectual community in the classroom.

Participant Survey

- "This course improved my mathematical skills and understanding."

86% strongly agree; 12% agree

- "The Summer course has totally changed the way I feel about myself as a user of mathematics, and therefore, my ability to help my students develop a strong understanding of mathematical concepts."
- "I have looked closely at my questioning techniques as a result of this class. Although I have been teaching for almost 30 years, this was the first model of great questions-set in a class setting so that I could see reactions and results."

Performance Assessment: Patterns

- MEC-developed assessment pre and post
- Scored with Oregon Department of Education Rubric: $5+5+5+5$
- Two raters; high inter-rater reliability
- A Wilcoxon signed ranks test showed statistically significant improvement

Patterns $\boldsymbol{N}=70$	Conceptual Understanding		Processes and Strategies	Communication	Accuracy				
	Pre	Post	Pre	Post	Pre	Post	Pre	Post	Pre
:---									

A typical Problem: Growing Pattern C1

Stage 4

Stage 1

Stage 2

- Above are three stages in a growing pattern of square tiles.
- Build two more structures in the pattern. How many tiles will each take? How many tiles are needed for the $10^{\text {th }}$ structure?
- Write an algebraic rule to find the number of tiles needed for any stage of growth. Define your variables.
- Show geometrically why your rule makes sense.

Ann's Tabular Approach

Stage Number	Number of Tiles	
	Difference	
1	1	
2	5	4
3	13	8
4	25	12
5	41	16
6	61	20
7	85	24
8	113	28
9	145	32
10	181	36

- Observation: difference increases by 4 each new stage
- Rule: To find the number of tiles for a given stage, add a number which increases by four each time until you get to that stage.
- Recursive understanding only
-Why did Ann do this?

Growing Pattern B1

Stage 3

Stage 8

Stage 5

Stage 2

- Above are four stages in a growing pattern of square tiles.
- Build two more structures in the pattern. How many tiles will each take? How many tiles are needed for the $100^{\text {th }}$ structure?
- Write an algebraic rule to find the number of tiles needed for any stage of growth. Define your variables.
- Show geometrically why your rule makes sense.

How Jack Saw Going From Stage 4 to 5

$\mathrm{X}=$ tiles in previous stage $\mathrm{n}=$ current stage number
$\mathrm{T}=$ total number of tiles
Rule: $T=X+4(n-1)$

Add a layer all around going from stage 4 to stage 5 .

The number added is 4 times the previous stage number.

Shows only a recursive understanding, though expressed symbolically.

How Ben Saw Stage 5

$\mathrm{n}=$ stage number and $\mathrm{T}=$ number of tiles Algebraic Rule: $T=n^{2}+(n-1)^{2}$

How David Saw Stage 5

Area is length times width.
Area is half blue blocks and half white blocks (almost).

Why did David see

 it this way?Can David make his rule
Rule: Number of blue blocks is more algebraic? length times width, divided by 2,

$$
\mathrm{T}=(2 \mathrm{n}-1)^{2} / 2
$$ then rounded up.

How Cary Saw Stage 5

Growing Pattern A1

Stage 6

Stage 4

\square

Stage 1

Stage 3

- Above are four stages in a growing pattern of square tiles.
- Build two more structures in the pattern. How many tiles will each take? How many tiles are needed for the $10^{\text {th }}$ structure?
- Write an algebraic rule to find the number of tiles needed for any stage of growth. Define your variables.
- Show geometrically why your rule makes sense.

How Cary Saw Pattern A1, Stage 6

(17)

 stage number

6 by 6 square

One-Shot Manipulative Experiment

- MA 098, Basic Algebra (developmental course)
- Limited previous experience with manipulatives
- Two sections (same instructor), each split at random into two subgroups
- Treatment subgroup received Growing Pattern C1 problem with manipulatives available
- Control subgroup received Growing Pattern C1 problem without manipulatives available
- Collaborative group work in (random) groups of four
- Individual write-ups graded by rubric: $2+2+2+2$ (two raters - consensus-reaching)

Statistical Results of Experiment

Rubric Item	Manipula- tives?	\mathbf{N}	Mean	SD	Significance (2-tailed)
Conceptual Understanding	Yes	37	1.0541	0.74334	0.051
Evidence of Problem-Solving	Yes	35	1.4000	0.73565	1.4324
No	35	1.5714	0.64724	0.60807	0.352
Quality of Explanation	Yes	37	0.8919	0.87508	0.172
Accuracy	No	35	0.6286	0.73106	0.17
Total	Yes	37	1.0541	0.94122	0
	No	35	1.6000	0.65079	$\mathbf{0 . 0 0 6}$
	Yes	37	4.4324	2.70330	0.184

How should we interpret these results?

