Learning Through Re-Arrangement of Patterns

UNIVERSITY OF ALABAMA AT BIRMINGHAM

GREATER BIRMINGHAM MATHEMATICS PARTNERSHIP (GBMP)

JOHN C. MAYER* AND WILLIAM O. BOND

The Greater Birmingham Mathematics Partnership is funded by NSF awards EHR-0632522 and DUE-0928665.

Greater Birmingham Mathematics Partnership

Partner	Students	Minority	Reduced Lunch	MS	Gr. 6-8			
Bessemer City Schools	4,087	97%	82%	1	962			
Fairfield City Schools	2,323	100%	71%	1	585			
Homewood City Schools	3,552	34%	22%	1	744			
Hoover City Schools	11,141	22%	13%	3	2,537			
Jefferson County Schools	32,553	28%	31%	7	8,713			
Mt. Brook City Schools	4,150	1%	0%	1	1,016			
Shelby County Schools	22,759	16%	24%	8	5,185			
Trussville City Schools	4,100	8%	11%	1	970			
Vestavia Hills City Schools	5,226	6%	4%	1	1,127			
Univ. of Alabama at Birmingham	17,584	31%						
Birmingham-Southern College	1,412	16%						
Mathematics Education Collaborative – Bellingham, Washington								

GBMP Activities

3

- 1. Summer Courses
- 2. Mathematics Support Teams
- 3. Administrator Sessions
- 4. Community Mathematics Nights
- 5. Middle School Mathematics Teaching Certificate
- 6. IHE Course Development (UAB & BSC)
- 7. Engineering Application Tasks

GBMP Summer Courses

- Patterns: The Foundations of Algebraic Reasoning
 Also MA 313 at UAB (semester format)
- Patterns II: Further Explorations in Algebraic Reasoning
- Numerical Reasoning
 - Also MA 316 at UAB
- Geometry and Proportional Reasoning
 - Also MA 314 at UAB
- Probability
- Data Analysis
- Extending Algebraic Reasoning I and II

Summer Courses

- Challenging nine-day mathematics content courses
- Inquiry-based
- Menu-driven
- Expandable tasks
- Multiple representations
- Manipulatives
- Collaborative group work
- Academic year follow-up sessions

Challenging Courses and Curricula

Deepening understanding of big mathematical ideas

□ Introduce a mathematical idea by posing openended problems that motivate it.

Productive disposition

□ Help students develop persistence, resourcefulness, and confidence.

Inquiry and reflection

Encourage students to think critically about mathematical ideas and solutions.

Communication

□ Value the role of communication in developing an intellectual community in the classroom.

Participant Survey

• "This course improved my mathematical skills and understanding."

86% strongly agree; 12% agree

- "The Summer course has totally changed the way I feel about myself as a user of mathematics, and therefore, my ability to help my students develop a strong understanding of mathematical concepts."
- "I have looked closely at my questioning techniques as a result of this class. Although I have been teaching for almost 30 years, this was the first model of great questions—set in a class setting so that I could see reactions and results."

Performance Assessment: Patterns

- MEC-developed assessment pre and post
- Scored with Oregon Department of Education Rubric: 5 + 5 + 5 + 5
- Two raters; high inter-rater reliability
- A Wilcoxon signed ranks test showed statistically significant improvement

Patterns N = 70	Conce Unde	eptual rstanding	Processes and Strategies		Communication		Accuracy	
	Pre	Post	Pre	Post	Pre	Post	Pre	Post
Median	2.0	4.0	2.0	4.0	2.0	4.0	4.0	5.0

- Above are three stages in a growing pattern of square tiles.
- Build two more structures in the pattern. How many tiles will each take? How many tiles are needed for the 10th structure?
- Write an algebraic rule to find the number of tiles needed for any stage of growth. Define your variables.
- Show geometrically why your rule makes sense.

Ann's Tabular Approach

10

Stage Number	Number of Tiles	Difference	
1	1		
2	5	4	
3	13	8	
4	25	12	
5	41	16	
6	61	20	
7	85	24	
8	113	28	
9	145	32	
10	181	36	

- Observation: difference increases by 4 each new stage
- Rule: To find the number of tiles for a given stage, add a number which increases by four each time until you get to that stage.
- Recursive understanding only
- Why did Ann do this?

- Above are four stages in a growing pattern of square tiles.
- Build two more structures in the pattern. How many tiles will each take? How many tiles are needed for the 100th structure?
- Write an algebraic rule to find the number of tiles needed for any stage of growth. Define your variables.
- Show geometrically why your rule makes sense.

How Jack Saw Going From Stage 4 to 5

Add a layer all around going from stage 4 to stage 5.

The number added is 4 times the **previous** stage number.

X = tiles in previous stage n = current stage number T = total number of tilesRule: T = X + 4(n-1) Shows only a recursive understanding, though expressed symbolically.

n=stage number and T=number of tiles Algebraic Rule: $T = n^2 + (n-1)^2$

- Above are four stages in a growing pattern of square tiles.
- Build two more structures in the pattern. How many tiles will each take? How many tiles are needed for the 10th structure?
- Write an algebraic rule to find the number of tiles needed for any stage of growth. Define your variables.
- Show geometrically why your rule makes sense.

One-Shot Manipulative Experiment

18

- MA 098, Basic Algebra (developmental course)
- Limited previous experience with manipulatives
- Two sections (same instructor), each split at random into two subgroups
- Treatment subgroup received Growing Pattern C1 problem with manipulatives available
- Control subgroup received Growing Pattern C1 problem **without** manipulatives available
- Collaborative group work in (random) groups of four
- Individual write-ups graded by rubric: 2 + 2 + 2 + 2
 (two raters consensus-reaching)

Statistical Results of Experiment

Rubric Item	Manipula- tives?	Ν	Mean	SD	Significance (2-tailed)		
Conceptual Understanding	Yes	37	1.0541	0.74334	0.051		
	No	35	1.4000	0.73565	0.051		
Evidence of Problem-Solving	Yes	37	1.4324	0.64724	0.050		
	No	35	1.5714	0.60807	0.352		
Quality of Explanation	Yes	37	0.8919	0.87508	0.170		
	No	35	0.6286	0.73106	0.1/2		
Accuracy	Yes	37	1.0541	0.94122	0.006		
	No	35	1.6000	0.65079	0.000		
Total	Yes	37	4.4324	2.70330	0.184		
	No	35	5.2000	2.09762	0.104		

How should we interpret these results?