THE IMPACT OF INQUIRY-BASED MATHEMATICS ON STUDENT ACHIEVEMENT

Presenters:

John C. Mayer (UAB-Mathematics) William O. Bond (UAB-Mathematics) Joshua H. Argo (UAB-Mathematics)

The Greater Birmingham Mathematics Partnership is funded by NSF award EHR-0632522

TEAM-Math Conference

Tuskegee University September 12, 2009 The Mathematical Education of Teachers

Co-Authors of Relevant Article

Rachel Cochran, Center for Educational Accountability Jason Fulmore, Center for Educational Accountability John Mayer, University of Alabama at Birmingham Bernadette Mullins, Birmingham-Southern College

Contributors Include

William Bond (Graduate Assistant, Curriculum Development and Implementation) Joshua H. Argo (Undergraduate Assistant, Statistics and Evaluation)

Greater Birmingham Mathematics Partnership

Partner	Students	Minority	Red. Lunch
Bessemer City Schools	4,087	97%	82%
Fairfield City Schools	2,323	100%	71%
Homewood City Schools	3,552	34%	22%
Hoover City Schools	11,141	22%	13%
Jefferson County Schools	32,553	28%	31%
Mt. Brook City Schools	4,150	1%	0%
Shelby County Schools	22,759	16%	24%
Trussville City Schools	4,100	8%	11%
Vestavia Hills City Schools	5,226	6%	4%
University of Alabama at Birmingham	17,584	31%	
Birmingham-Southern College	1,412	16%	
Mathematics Education Collaborative			

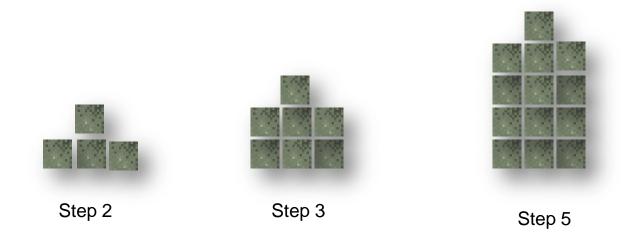
Summer Courses

Total enrollment over 1700

- Patterns: The Foundations of Algebraic Reasoning
- Patterns II
- Numerical Reasoning
- Geometry and Proportional Reasoning
- Probability
- Extending Algebraic Reasoning
- Extending Algebraic Reasoning II

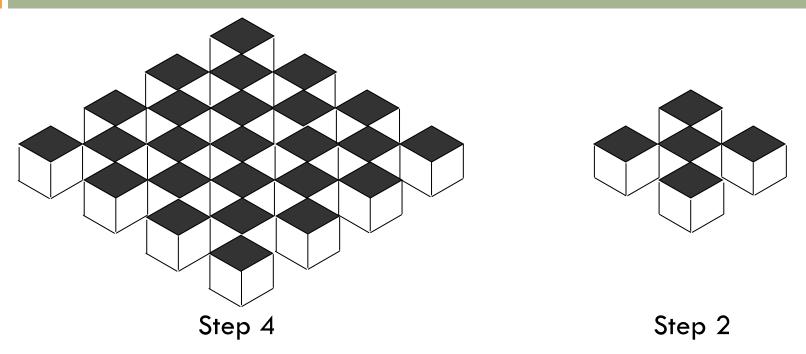
Challenging Courses and Curricula

- Big mathematical ideas
- Inquiry and reflection
- Productive disposition
 - Communication

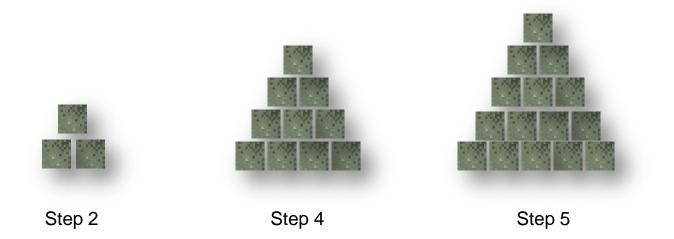


Objective Test: Patterns

- 31 items pre and post
- Content Knowledge for Teaching Mathematics (CKTM) plus additional items developed by Nanette Seago


- □ 3-point increase in mean (N = 76)
- \Box Effect size = 0.5; medium effect
- Preliminary longitudinal data (N=20) indicates gains are maintained

Sample Patterns Task 1


- Build two more steps in this pattern.
- How many tiles are needed for the 10th step?
- How many tiles are needed for the n^{th} step?

Sample Patterns Task 2

- Build two more steps in this pattern.
- How many cubes will it take to build the 10th step?
- □ How many cubes will it take to build the n^{th} step?
- Explain why your answers make sense geometrically.

Sample Patterns Task 3

- Build two more steps in this pattern.
- How many tiles are needed for the 10th step?
- How many tiles are needed for the n^{th} step
- Explain why your answers make sense geometrically.

Performance Assessment: Patterns

- Scored with Oregon Department of Education Rubric
- Two raters; high inter-rater reliability
- A Wilcoxon signed ranked test showed statistically significant improvement

	Conceptu Understa		Processes and Strategies		Communication		Accuracy	
	Pre	Post	Pre	Post	Pre	Post	Pre	Post
Median	2.0	4.0	2.0	4.0	2.0	4.0	4.0	5.0

ODE Rubric Descriptors

- Descriptors for performance at the 2.0 level:
 - Underdeveloped, sketchy, ineffective, and unclear
- Descriptors for performance at the 4.0 level:,
 - complete, adequate, relevant, explained, and supporting the solution
- □ Inter-rater reliability over .7 on each dimension

Portfolios: Patterns

- Scored with CEA-developed rubric
- Three raters; consensus-reaching

Patterns ($N = 20$)	Median Score	Incomplete Score = 1	Emerging Score = 2	Proficient Score = 3	Expert Score = 4
Problem Translation	3	0	1	12	7
Mathematical Procedures	3	0	1	13	6
Productive Disposition	3	0	1	11	8
Inquiry and Reflection	3	0	2	11	7
Justification and Communication	3	0	2	11	7

Behavioral Checklist: Patterns

CEA-developed checklist based on CCC dimensions

Patterns (N = 15)	Day 1	Day 4	Day 8
Mathematical Ideas			
uses variables to describe unknowns	7%	27%	93%
explains why equations make sense geometrically	7%	27%	73%
represents linear, quadratic functions in variety of ways	0%	13%	53%
Productive Disposition			
persists when answer is not known	0%	33%	87%
asks for guidance but not answers	13%	27%	80%
tries variety of strategies for approaching problems	13%	73%	93%

Behavioral Checklist: Patterns

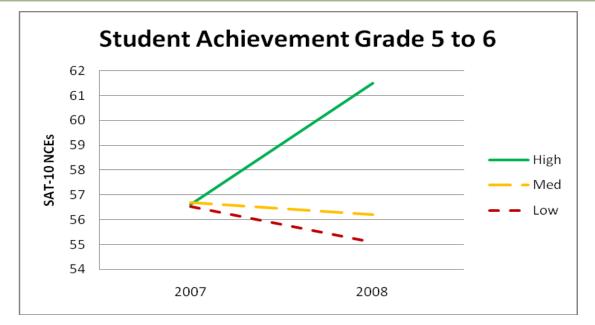
Patterns (N = 15)	Day 1	Day 4	Day 8
Inquiry and Reflection			
makes extensions and connections beyond problem	0%	13%	67%
explores why it works, whether it will always work	0%	7%	53%
confusion and mistakes lead to further exploration	20%	73%	100%
Communication			
explains reasoning fluently	0%	13%	80%
asks probing questions	20%	33%	93%
shares ideas with class	27%	47%	93%

Classroom Observations

Reformed Teaching Observation Protocol (RTOP) ----Two raters; consensus-reaching

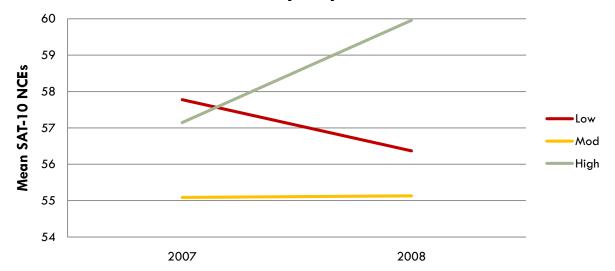
RTOP Subscale (maximum of 20)	Courses	Median
Lesson Design/Implementation	0 1 2 3+	5 12 14 13
Communicative Interaction	0 1 2 3+	4 11 13 13

Sample (N = 116); 0 courses (N=17); 1 course (N=35); 2 courses (N=38); 3+ courses (N=26)


Classroom Observations

RTOP Subscale (maximum of 20)	Courses	Median
Procedural Knowledge	0 1 2 3+	7 11 14 13
Propositional Knowledge	0 1 2 3+	7 12 14 15
Student/Teacher Relationships	0 1 2 3+	7 14 15 15

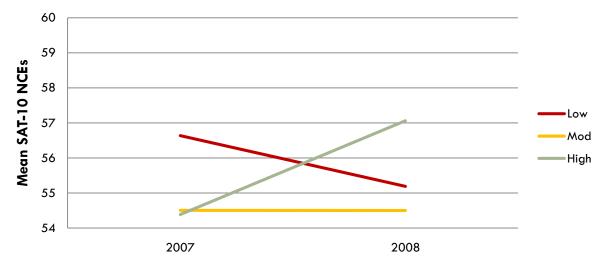
Ranking of Implementation of Inquiry-Based Pedagogy


- High implementing grade level
 - At least one summer course by every teacher
 - At least 30% RTOPed, and all scored at 12.5 or above on every subsection of RTOP
- Low implementing
 - No participation, or
 - Participation as above, 30% or more RTOPed, and all scored at 5 or below on each subsection of RTOP
- Moderate implementing
 - All others

Student Achievement by Implementation

Implementation Level	2007 Mean	Std Dev	2008 Mean	Std Dev	N
Low	56.5	20.7	55.1	19.6	3640
Moderate	56.7	21.5	56.2	20.7	1652
High	56.6	23.6	61.5	22.1	666
Total (6 systems)	56.6	21.3	56.1	20.3	5958

Student Achievement Grades 5-8



SAT-10 over Time by Implementation Level

Implementation Level	2007 Mean	Std Dev	2008 Mean	Std Dev	N
Low	57.8	20.8	56.4	20.9	14506
Moderate	55.1	20.8	55.1	20.9	6215
High	57.1	21.1	60.0	21.0	3305
Total (6 systems)	57.0	20.9	56.5	21.0	24026

SAT-10 Excluding High SES System

SAT-10 over Time by Implementation Level

Implementation Level	2007 Mean	Std Dev	2008 Mean	Std Dev	N
Low	56.6	20.4	55.2	20.4	13811
Moderate	54.5	20.6	54.5	20.6	6070
High	54.4	20.4	57.1	20.2	2886
Total (5 systems)	55.8	20.5	55.3	20.4	22767

Statistical Significance

- Methods for analysis
 - Repeated Measures ANOVA
 - Calculation of Difference Score and Univariate Analysis
 - **D** Both significant at p < .05
 - Adjusted for differences in sample size

versity 2009 EAM-Matl Sept

THE IMPACT OF INQUIRY-BASED MATHEMATICS ON STUDENT ACHIEVEMENT

Rachel Cochran, Center for Educational Accountability Jason Fulmore, Center for Educational Accountability John Mayer, University of Alabama at Birmingham Bernadette Mullins, Birmingham-Southern College

The Greater Birmingham Mathematics Partnership is funded by NSF award EHR-0632522

Operational Definition of Challenging Courses and Curricula

Big Mathematical Ideas

- Teach for understanding. This refers to helping students achieve "an integrated and functional grasp of mathematical ideas." [NRC] This includes developing conceptual understanding, strategic competence, and procedural fluency.
- Introduce a mathematical idea by posing problems that motivate it.
- Provide a coherent collection of problems organized around a big mathematical idea.
- Provide opportunities for students to use multiple representations of a mathematical idea.
- Provide opportunities for students to explore real-world problems connected to big mathematical ideas.

Inquiry and Reflection

- Engage students in inquiry.
- Communicate that learning mathematics should be a sense-making process.
- Ask students to justify their thinking.
- Ask students to engage in reflection.
- Encourage students to think critically about mathematical ideas and solutions.
- Encourage diverse ways of thinking.
- Communicate that both accuracy and efficiency are important.
- Incorporate technology when appropriate.

Productive Disposition

- Help students develop persistence, resourcefulness and confidence.
- Help students become autonomous learners.
- Provide a safe, respectful learning environment.

Communication

- Promote the development of mathematical language.
- Value written communication by asking students to explain their ideas in writing.
- Value verbal communication by asking individuals and groups to articulate their thinking.
- Value the role of communication in developing intellectual community in the classroom.
- Establish clear expectations for mathematical assignments.