Complete strictly locally convex spacelike hypersurfaces in De Sitter space

Joel Spruck

We are interested in finding complete spacelike (i.e. the induced metric is Riemannian) strictly locally convex immersions with constant curvature and with prescribed (compact) future asymptotic boundary Γ in De Sitter space dS_{n+1} . The so called steady state space \mathcal{H} , which features prominently in the cosmological models of Bondi-Gold and Hoyle, is only half of de Sitter space so is incomplete. Its boundary as a subset of dS_{n+1} is a null hypersurface which represents the past infinity of \mathcal{H} . The steady state space is isometric (with time orientation reversed) to $\mathbb{R}^n \times \mathbb{R}_+$ if \mathbb{R}^{n+1}_+ is endowed with the Lorentz metric

(0.1)
$$g_{(x,x_{n+1})} = \frac{1}{x_{n+1}^2} (dx^2 - dx_{n+1}^2),$$

which is called the half space model for \mathcal{H}^{n+1} . Because Σ is strictly locally convex and strictly spacelike, we are forced to take $\Gamma = \partial \Omega$ where $\Omega \subset \mathbb{R}^n$ is a smooth domain and seek Σ as the graph of a "spacelike" function u(x) over Ω , i.e. $\Sigma = \{(x, x_{n+1}) : x \in \Omega, x_{n+1} = u(x), |\nabla u| < 1, \text{ in } \overline{\Omega}\}$. One easily computes that Σ is locally strictly convex in the half-space model if and only if $x^2 - u^2$ is (Euclidean) locally strictly convex . The asymptotic Plateau problem is then to find Σ satisfying

$$f(\kappa[\Sigma]) = \sigma > 1, \ \partial \Sigma = \Gamma$$
.

where $\kappa[\Sigma] = (\kappa_1, \ldots, \kappa_n)$ denote the (positive) principal curvatures of Σ . I will describe recent joint work with my student Ling Xiao in which we solve this problem in great generality.